Notes on the back story of this letter:

I sent this 17-page letter to John McGechie just a couple of months before my departure to comply with my mandatory Military Service, which would mean I'd stay far from home for a looong time and unable to contribute any materials for the duration, so I took this opportunity to include a new batch and share some comments re the newly released SHARP PC-1211 Pocket Computer aka TRS-80 Pocket Computer.

The letter begins with my telling him about my many activities and among them my attempt to create a Madrid Chapter of PPC by preaching the HP RPN evangelion to interested people so that they would join me and the Chapter would be up and running ASAP. I then told him about the various people who'd sent me letters (Jakub Tatarkiewicz, Keith Jarett, Tom Cadwallader, John Dearing, etc.) and what they told me in them, plus some comments on the recent materials we both sent each other.

Next, I comment on a number of $H P$ products rumoured to be released soon, including details on the "Kangaroo" (which was indeed released as the HP-75) and new peripherals for the HP-41, among them the improved printer (released), some "universal interface" (released as HP-IL), and a tape drive (released as an $H P-I L$ peripheral), so the rumours I heard were correct for the most part.

Now there follows a 6-page section where I comment very extensively and enthusiastically on the newly released SHARP PC-1211 Pocket Computer, with full details and many comparisons vs. the $\boldsymbol{H P}$-41, including relevant examples throughout.

Finally I include the following materials for their possible publication in some issue of the Melbourne Chapter's Technical Notes magazine, namely:
(1) \boldsymbol{O} 2, a new version of Othello featuring 2 levels of play, Level 1 playing exactly the same as my original Othello program, and Level 2 featuring better play at the expense of slower running times. The code is improved and includes some additional features while still fitting in 672 bytes and optionally using the printer to print the board, moves and all messages.
(2) SEED, a quasi-truly random number generator ($R N G$), which takes no input and generates a seed ($0<=$ seed <1) to be used to initialize another $R N G$, thus no need to ask the user for an initial seed. It uses a number of synthetics and normal techniques to ensure that different seeds are generated every time it's called, even within a loop. It's not intended to be used as the RNG for the program but just for obtaining a seed to initialize the one used.

Last but not least, the letter also included some postcards featuring locations in Madrid, as John had previously sent me one featuring a view of Melbourne and I wanted very much to reciprocate.

John Magechie
Philosophy Department
Monash University
Clavton, Victoria 3168
AUSTRALIA

Valentin Albillo
Padre Rubio,51-29C
Madrid 29
SPAIN

$$
\text { april, } 10-1981
$$

Dear John:
As you may see, a long period of time has elapsed since my last letter, dated december 12. The keyword is time. Time, timel It's horrible the absolute lack of free time I have suffered these last wonths. In the mornings, I stayed at the office, doing everything from selling calculator and computer-related products, to (more often), specialized software (technical programs, extremely complexs one of them is so large, that it has been partitioned in 9 parts, $400+$ bytes each, and data used by the program is packed in the registers, allowing matrices as large as $80 x 80$ to be treated -sparse matrices, of course-). During the afternoons, I acted as a particular professor, teaching mathematies to several people. I also dedicated the afternoons, after the classes, to write programs for some customers that asked for a particular, personal, topic, and wanted someone to write the program for them. I earn a lot of money this way, but it is quite time-consuming. Other personal problems added up to shorten my free time even more. For instance, I recruited many new members for PPC: I meet some people, all of them own a 41c. Then I introduced them to the magic and mystery of 41c synthetic (and non-gynthetic) programmings in fact, I almost opened a "third eye" to each and every of them. Then, I convinced them to subscribe to PPC CJ. Now there are at least 7 members of PPC in Madrid, and probably more, because every PFC member acts as a nucleus of crystallization that atracts other people towards PPC.

The purpose of all this was to create a Madrid Chapter of PPC. I planned meetings with all those people, and even some type of publication. Very nice, isn't it ? But can't be done ! Simply because I cannot dedicate any time at all to the projected Chapter: I must fulfill my Military Service this year, beginning late May or June. That's 18 full manths out of home, far from mordinary activities. I cannot create a Madrid Chapter, then let it die. I am now beginning to prevent all my friends of ny next departure.

Well, I hope this prologue explains my silenoe I have received letters from several peoples Jakub Tatarkiewioz, which told me some problems he had experienced while trying bug 9. As far as I can tell, he simply misunderstood the explanations (perhaps you edited too much the article). I sent him a photocopy of the full article, for him to check. Keith Jarett was kind enough to answer one of my letters regarding the PPC Custom ROM. He was also responsible for my program CHECKEPS being published in PPC CJ Jan-Feb, for whioh I am greatly indebted to him. Tom Cadvallader sent some interesting information about synthetic XROMs (pseudo-XROMS as well), and, as it's usual, without the slightest note or explanation. John Dearing asked for uy writton permission to use some of my routines-tips appeared in PPC CJ, to be publishod in a book which is for the 410/ov the same as the "Better Programaing" was for the 67/97. I like the idea very much, and Pimily encourage all PPC members to send their inputs to Jolm, so that this book can be as good and complete as wo all need and want. I myself sent hia 6 pages (or more, can't renember now) full of tips, little routines, utilities, etc. I also received a letter an the PPC Custom ROMz it seoms that 4 routines in the RCM will be miorocode. That's fantastic !! We'll have 4 now fumotions in our beloved calculator 11 Thay inolude non-normalized extended SIO,RCL and programmable TANE and PAUSE. The non-normalized RCL will be extremely useful. You just can't imagine the inoredible routines whioh may be programed using this function.

By the way, I have not yet received the PPC CJ of March. (But RNS was kind onough to send me not one but three (l?) issues of the October -80 mumber of PPC CJ, which was missing). I also received PPT TM V5, and this was very comforting to me, an I finally had a coafirmation that my last letter (incredibly expensive to send it) had arrived
(though in a very deplorable condition) safely. As it seams none of its contents get lost. The 34 c book was brand-new when I sent it. I hope it arrived too in a good state. How, as you can see, this letter has traveled enclosed in a much tougber envelope, surrounded by cello tape, to avoid open edges and the liko. Check that the enclosed mag cards are still in place.

1s I was commenting, PFC TN V5 arrived safely. I have not yet received PPC TN V6s did you send it ? If you did, it is quite obvious that it was lost. Send ma copy, will you? 1 s I suppose, V6 shall include very interesting articles an miorocode, ROM O, etc, and I am anxious to have a look at it. You can continue to send PPC TN to my address, even if I have to go to some other place during my Military Service, because my relatives will take care of forwarding the issues of both PFC CJ and PPC TN to ay temporary address, so that I can be as informed and "on the line" as possible. I do not plan to stay quiet while I am on the Armys on the other side, it can be one of my best periods since my only occupation will be the Service itself and my dearest hobby: programming!

I received several letters from you, containing pre-production articles from PPC TN V5 and V6. If you sent something else, it was lost, no doubt. On the other side, I have sent nothing since my letter dated december 12, except a Christmas card. Did you receive it?

The news here are not particularly amazing: just rumours on new HP products:
-the famous "Kangaroo":
it is not very clear to me whether it may be rem leased into the market soon or not. Some sources point that it may be sold in Spain as soon as in October, but I do not believe this to be possible. Not until 82, at loast. Besides, the only things known about the machine are its pocket size, its BASIC language, and its $9 K$ of RAM, not to mention rumours about video interfaces, and the like. I know that you cannot publish information about future produots in PPC TN, so I ask yau to give me your impressions on the subject in a future letter.
-new peripherals for the $41 \mathrm{c} / \mathrm{cV}$ s this is a never-ending topic: Last news are: (just rumours):
-improved printer/plotters features presumably larger buffer plotting capabilities, prosrammable paper feed, allo wing real dot-by-dot graphics to be produced, and capable of printing any program in RAM as barcode.
\rightarrow miversal interface: will allow the 41 c to control any device connected to its microprocessor via the universal interface (IEEE , perhaps?). This can be useful tos -use almost any commercial printer with the 410 -interface the calculator to a standard TV set -interface the 410 to a standard cassette tape-rec. -use the 41c as a low-cost controller
-tape drives ala $\mathrm{HP}-85$, should allow storage of program and data at a high speed, fully under program control. Directory and peripheral functions will allow chaining of programs and storage and retrieval of data.
-timer ROM: a ROW featuring a timer with all standard functions plus several programmable ones, to use time as an element in programs (such functions as: ON TINER 1 GOTO or GOSUB, ala HP-85)
Will any of these peripherals become a reality ?? I really do not knows I suppose the Universal interface and the Timer BO to be already produced, to be comercialized very soon. The tape drive and the printer seem somewhat more utopic. Any news (or comments)?

A friend of mine, who recently bought an HP-85 coaputer (to which I have a relatively easy access), also got something mores be orned a 410. But, after he bought the 85, and after be was used to BASIC, be began to find the 410 unfriendly: BASIC and the "machine language type" of the 410 have very little in common. So be decided he noeded some type of calculator using a language more similar to that of the 85. The solutions he sold his 41c, and bought the SHARP PC-1211 Pooket oomputer, programmable in BASIC. Fow ay friend needed not to change his mind when turning from his 85 to his calculator or viceversa, because both were certainly compatibles a program writton for the 85 is, in most cases, easily adapted to the Sharp, and viceversa. To give an examples one who speaks English, understands both English people, or US people. Or Australien people, or The point is that the local implementation of the language slightly varies from country to ocuntry, but the language itself is the samo. Something similar is applicable to the 85 and the Sharp. The 85 features a very extended 3 ZK BASIC, while the Sharp has a less powerful cne. But both are BASIC, and you do not have to change from English to Chinese to commanicate with its just adapt yourself to the "accent".

The point of all this is that my friend allowed me to use the machine for a weak. So I had time enough to fully appreciate it. How I want to tell you my impressions about the machine, togetber with a brief, but detailed, description of it, and some comments on the product.

The Sharp PC-1211 (marketed in the US under the name TRS-80 Pooket computer, though they are exactly the same machine; the Tandy machine has not more memory than the Sharp.) is a very slim, compact calculator type machine. At a first glance, it looks very pretty, certainly prettier than the old 41c. It is metallic, has a 24 -character dot matrix display that produces better looking alpha-and numeric characters than the 14 -segment characters display of the 41c. The keys provide some tactile feedback when pressed, though not as strong as HP keyboards.

Besides, the machine is almost inexpensive: bought in Spain, it costed just over 210 US $\$$, including its cassete interface. This is very cheaps a bare bones 410 costs twice as much, card reader not included. If you want card reader, you need another 250 USS. And once you have spent that little fortune, you are left with a machine having 445 bytes of programable memory. The Sharp features 1424 bytes, almost 1000 bytes more. You'll agree it is really cheap.

The Sharp machine has, like the 41c, contimuous memory: program, data, and assignations are preserved when the machine is turned off. The angular mode and the RUN, PRO, etc. mode are preserved too (the 410 has the advantage of preserving all of its contents, including the program pointer, so you can turn off the machine, then on, and resume program execution.). There is a master clear for the Sharp: the button labeled "all reset" clears, if pressed, the whole machine. This is very convenient if a static crash takes plaoe: just press the button with a pencil, and you may use the machine again. This is more convenient than having to take out the batteries to reset. On the other side, changing batteries must be a missance: it is necessary to unscrew 4 screws, in order to remove the back cover, to replace batteries. Fortunately, batteries seem impossible to discharge.

Used in manual calculation, the Sharp is a delight. I never liked the AOS system of Texas Instruments calculators. You get lost using brackets and functions, but it was just because you couldn't seo the computations in the display, fust the results. Once introduced a sequence of operations, you had no access at all at the operands and operators. You just pressed the equals key and got a result. No way to know if it was correct or wrong. Further, if you were sure the result to be wrong, no way to know were the mistake had taken piace. And besides, the aOS system of Texas Instruments calculators is not really algebraic: to compute SIN 32, you had to press 32, SIN, which does not conform with algobraic logic. It is easy to see why most people prefer RPNz no messy operation, you have complete access to intermediate results, less keystrakes, parentheses are not needed. But RPN is not without blame, either. First, the 4-levelstack is insufficient to attack wost complex problems left-to-right, and some reordering is necessary prior to press any keys. With a little prac-
tice is not difficult at all, but the ideal machine should not require any effort on the user, just key-pressing, and with a 4-level stack, thinking is required, no doubt. Second, we may love RPN, but most computations are written down, in paper, in algebraic form, and to compute them using a BPN calculator requires some internal conversion.

Sharp uses BASIC to solve computations manually. BASIC of course, uses algebraic hierarchy to do the work. To resume, the calculator mode of the 85 and the RUN mode of the Sharp work alike: you enter the expression as it is written in true algebraic form. True means that to compute SIN 32 you enter SIN 32, not 32, SIN. Sharp eliminates this way most drawbacks of TI AOS: now you can't get lost while you are entering your numbers and operations, because you see them in the display as you enter them. If the expression is longer than 24 characters, the display scrolls automatically. You can enter expressions up to 80 bytes long (more than 80 characters: SIN is 3 characters, 1 byte). If you don't remember whether you entered a parentheses or not, you can use the cursor controls to scroll the display either direction. Then, ance you entered the whole expression press ENTER and the result is displayed at ance.

If you made an error, an error code appears, and you simply press any cursor control to recall to the display the whole expression, with the cursor blinking at the portion where an error was first deteoted. So you can easily correct any mistake: you can at will delete, insert or replace any character or characters in the expression, using the cursor controls (that repeat if held pressed).

Which is more, similarly to the IAST X function of the 410, which recalls to the display the last number or alpha in it, preesing a key recalls to the display the whole expression which was in it before executing a computation. Fou can then edit the expression and recompute again. This procedure may be repeated as often as desired. Also, you can compute several expressions at one tima, simply separe them using commas. Anether feature is that the result of an expression may be used in another, by siaply typing new expressions inmediately:
Examples; to compute $2+3$, then add 4 to the result:

$$
\begin{aligned}
2+3 \text { ENTER } & -(\text { display })=5 \\
+4 & -(\text { display })=5+4 \\
\text { ENTER } & -(\text { display })
\end{aligned}
$$

To find the roots of a quadratic equation (marmal calculation):
press: $A=1, B=5, C=-6,(-B+F(B B-4 A C)) / 2 A$
pressing ENIER will cause the above computations to be executed, and the value for the root being displayed. To compute the other root, press the cursor key (the whole expression reappears), place the chirsor over the + then press -, ENPFR and the 2nd root appears. To solve another equation, press the cursor key (the expression reappears once more), and ohange or edit the values for A, B, and/or C as desired, then press ENTER to comperte the root(s). As you may see, it is truly astounding what you can do in just marmal calculations. That can't be done with the 410 , unless programmed.

There is another useful features the Sharp machine uses a full algebraic hierarchy, including implied multiplication and logioal (Boolean) computations. The machine has a 8 -level stack for numbers (intermediate results) and 15 -level stack for functions. So almost any expression can be entered left to right. For ingtance, the well known HP example to compute the Mach number oan be computed in the Sharp by keying it as it's writton. Besides, all internal ocmputations and funotions are computed with 12-digit mantissas, trunoated to 10 places for presentation. Thus, there are 2 guard digits, to increase accuracy.

To belp save unnecessary keystrokes, the Sharp allows implied multiplication. To compute 4xAC, you just press 4AC. TO compute $2 P I$, simply $2 \pi_{0}$ To compute $\sin (2 x)$, simply $S I I 2 \pi$. As you may see, the parentheses before the 2 X are not needed. Similarly, to compute $0^{-5 x}$, simply EXP -5 X . No parentheses, no E sign. 1lso, final parentheses noed not be closed, ENTER oloses all final parentheses. This tochniques save bytes when programing, as we•ll see.

Under manual caloulation, you may use memories, if
you want to. You have (if no progran) as much as 204 registera (each register is 8 bytes). Fach registers holds either a number or 7 alpha characters. To store SN 30 in register A, simply: $A=S I N 30$, ENTER. To recall the contents of A, simply A, ENTER.

You can perform lagio computetions, toos for instances $A=2 x(B=C)+3 x(C+D\rangle=S I N(H-G))$, if computed would result in A having a value of O if both $B=C$ and $C+D=S I N(H-G)$ are false, 2 if one of them is true (the 18 s) and the other is false, or 5 if both are true, or 3 if the and is true and the 1st is false. Logical computations, as you can see, can be mixed with normal calculations. This, we shall see, is very useful when programming. Another feature: contimally typing SIN for calcula ting a sine can be tedious. Similarly to the 41c, you can assign functions (and programs) to keys, for its execution at the prees of a key. But there are two fundamental differences. First, assigning functions to keys does not consume program or data memory. There is a separate 48 -byte memory to store assignments. Assigning a function takes a minimum of 2 bytes, thus you can theoretically assign a maximum of 24 keys. But this maximum is never reached. The advantage: having assignments does not use program memory. Disadvantages maximum of 18 different assignments at one time. But there is more: in the 41c, you are limited to 1 or 2-byte assignments. There is no similar limitation in the Sharp: you can assign any sequence of functions or keystrokes to a. maximum of 47 bytes. Thus, you can have the sequence $Y(X X+Y Y+2 X Y)$ assigned to the (shift)A key: pressing (shift) A would enter that sequence in the display either in DEF, RUN, or PRO (program) mode. This is very convenients very used sequences are: 1 "A" REM" which assigns a program to the shfta key and provides a title, or SEE2TS-INT E2TS which generates a pseudo-random rumber, etc. Another feature: the same key can be assigned simultaneously to a sequance and to a program.

This briefly resumes manual calculation. Programming is also truly remarkable. As you know, the Sharp uses BASIC language. BASIC is a high-level language, which allows the user to comunicate with the machine more easily. Of course, there are opinicns and there are opinions, but I, who have program med RPN HP calculators for years, and who also have learnt how to program in BASIC and FORTRAN, I consider myself as being qualified to express an impartial opinion about both ways of programming.

Sharp uses BASIC. How good is its BASIC 3 The answerz surprisingly good ! Of course, due to the pocket size of the machine, and other similar limitations, its BASIC language is somewhat limited in some aspects. But, believe it or not, there are some fields in which the BASIC of the Sharp exceeds that of the HP-85 itself.

First of all, programming in BASIC is very comfortable. The 410 uses a "machine language-like" language, that is, no language at all. Just programmed versions of sequences of keystrokes. When programming the 41c, you must take care of a lot of details.For instance, if a loop is to be set up, you must take care of placing a label for the loop, deciding whether it is to be incrementing (ISG) or decrementing (DSE), etc. As a result, making a program for the 410 is far more complex than if written in BASIC or other high level language. This is true. It does not matter that you are very used to the 410 and feel with it very comfortable. Being equally used to BASIC, you would realize that making a pragram is by far less time consuming, and the program flow is much more clear. I'll give examples in a moment.

The BASIC of the SHARP is quite complete. Most instructions are extended. For instance:
to input datar INPUT "ENTER $A^{\prime \prime}, A, N N=" ; A(27), A(I)$ when executed in a program, this line would display ENTER A. You then enter a value or any expression, the machines computes it and enters its value in the A memory. Then $N=$ appears, etc.
As you may see, a single INPUT is capable of prompting for the value, or values, with a message if required. You can enter numbers, alphas, or expressians. You do not need to (alpha) (alpha) to enter charaoters, just press the keys. As you can input expressions, which are automatically evaluated, you can enter more easily values such as $\mathrm{SQR}(2)$, etc. (You cannot do this in the 41. If a program prompts for a value, you cannot be sure about if you oan disturb the stack or not, unless specified, so, if you
attempt to evaluate an expression, you risk to disturb the stack, probably causing incorrect execution when resuming.)

A BASIC line can contain as many as 80 bytes. Multi-instruction lines are allowed. You can enter the instructions with arbitrary spacing: the machine formats each line before entering, supressing innecessary spaces, or adding spaces just before keywords: for instance, entering 10IN P UTA causes the machine to display 10: INPUT A when the ENTER key is pressed. You can list a program, view it line by line (scrolling the line if necessary), clear lines by simply entering its line mumber, edit lines using the cursor controls, and insert, delete or replace characters: the changes are not active in memory until you press ENTER. As the changes may take place on the line number, it is very easy to duplicate lines (most of these things you can't do with a 41c). You always know the exact number of bytes free to program, using the MEM function. A program can be given alpha labela, for reference in RUN mode.

Further, almost every keyword has an abbreviated form, to help when mamally loading programs: for instance, INPUT can be entered as I. GOTO as G., NEXT as N., etc. When you press ENTER, the machine converts the abbreviations to its full name. Each keyword (such as INPUT) takes only 1 byte of memory. Implied multiplication, final parentheses supression, final quotation marks supression, multi-statement lines, all these things help to save a lot of bytes.

The Sharp has not as many functions as the 41c has, but it does have a good deal of them: all trigonometrics, exponential, logarithmic, plus absolute, sign, integer part, all arithmetics, exponentiation, angle conversions, all logic operations, etc, form a good bibliotheque of functions. It operates with 12 -digit mantissas, in all 3 angular modes. It includes a beeper for audio output.

The GOTO (and GOSUB) instructions is very powrful: typical examples: GOTO 10, GOTO $2 \mathrm{ESIN}(A+B)+E X P X$ (which implements indirect GOTO. The 85 does not allow this. It allows ON ... GOTO, which is less powerful), GOTO "SOLVE" (goes to the line labelled SOLVE), GOTO H\$ (goes to the line labelled as the alpha characters stored in variable H\$. This allows indirect alpha GOTO). As you may see, you have the flexibility of label (alpha or numeric) addressing of the 41 c together with the line mumber addressing of the 85.

Conditionals are another strong point of the SHARP. In the 410, you are just allowed to test $x=y$, or $x<y$, or a flag, and then, if the test is met, you have one line to decide what to do, a GOTO in most cases. In the Sharp, you can do things like:

IF $A+B-C\rangle=J+H-S I N(A-B)$ BEEP 1: PRINT "NOT LEGAL":N $=N+1$: GOTO 80 as you can see, if the test (quite complex, by the way) is met, the machine will beep once, then print a warning message, increment a counter, and go to line 80. If not, it will simply resume execution in the line after the IF. Which is more, due to the logical operations, you can perform intrincate tests easily. For instance, you want to go to line 120 if A equals B or if C is greater than D and H equals $B+D$ simultaneously. This is accomplished this way:

$$
\text { IF }(A=B)+((C>D) x(H=B+D)) \text { GOTO } 120
$$

simple, isn't it? Imagine how to perform this test using the 41c!! It would take a lot of GTO's and LBL's, not to count programming effort to accomplish the programming itself. Besides, If can be followed by any instructions even a FOR-NEXT loop, or another IF (those things you cannot do with the 85). Logical programming becomes terribly easy with the Sharp.

The PRINT (and PAUSE) instructions are quite powrful, too: for instance, the line:

PRINT USING "\#\#.\#\#\#"; C $+\operatorname{SDN}(\mathrm{D}+\mathrm{H})$; "=COST";A\$(I);USING "\#.\#^"; J prints simultaneously numbers, texts, alpha variables, and computed values, all of them formatted as desired by USING (the equivalent of FIX and SCI).

Loops are possible using the FOR TO STEP NEXT construction. For instance, the lines

$$
\text { FOR } A(H)=B+C T O E X P(B-C) \operatorname{STEP} 5 J+2
$$

would set up a loop, with the variable $A(H)$ taking the initial value of $B+C$ and being incremented by steps of $5 \mathrm{~J}+2$ until it reaches or exceeds $\operatorname{EXP}(B-C)$. Thus, it is very easy to set up a loop, which can be incrementing or deorementing. The limitations are that only 4 nested loops oan be executed at one time, and that, similarly to the 410 , the maximum value for the final value
must be only 3 digits (from -999 to 999), though the STEP value can be from -999 to 999 (in the 41c, only 1 thru 99). There are no limitations on the initial value, it may be PI, for instancs. Subroutines are also limited to 4 levels (6 in the 410), which proves sufficient in most cases.

There are many more features and particularities not described here, because I do not want to convert this letter in the owner's hanbook of the Sharp machina. Just point out that programs can be very easily edited, that you can single-step (single-line, to be exact) thru a program, sesing the line which has just bean executed, and being able to perform manual calculations between one step and another, resuming the single stepping . When an error is detected during program execution, an error code appears, and if you press the cursor key, you can see in the display the faulty portion of the line, with the cursor blinking at the location where the error was found. Another very, very useful feature: you can stop momentarily a program, make any hand computations, then resume the program execution. That you cannot do with the 41c !!! If you stop a program running in the $41 c$ (at an arbitrary point), then try to perform intrincate computations by hand, you will disturb the stack no doubt. Then, when you press R / S to resume execution, the machine will find a different stack, and can give place to erroneous execution thereafter. So, if you are running a very long program (such as computing PI to a thousand places), you are condemned to let it execute completely: if you dare to stop the program, make a complex calculation, then press R / S, chances are you have spoiled the execution.

That cannot happen with the Sharp: the Sharp has no user stack, so stopping a program and making hand calculus cannot spoil the "stack" at all, because calculus are made via an input buffer of 80 bytes, and internal stacks for data and functions. Once you are done with the calculus, executing CONT will resume program execution from where it left, without any disturbance at all. You can, thus, run a very large program and, if necessary, halt it at any moment, use the machine as a manual calculator, then resume with the program. Great, isn't it?.

Programs can be run using either RUN (which can be followed by a line number: the execution begins there, or an alpha label, or even a variable (indirect RUN), or by assigning them to keys. To assign a program to a key, simply include a "(letter)" after the line number of its first line. Pressing (shift)(letter) in DEF mode will start program execution. Line mumbers and /or labels are arbitrary, and can be introduced in any orders they are sorted and placed properly as they are entered. Editing lines takes less time than similar manipulation of 41 c programs: no PACK, no delays, no nulls scattered here and there. GOTO's and GOSUB's are not compiled, either, so program execution is not as fast as in the 41c. The 41c is faster. But writing a program in the 410 and entering it using the keyboard takes much more time than in the Sharp. See examples. The BASIC of the SHARP allows unidimensional arrays, such as $A(8), A(J)$, $A(23+47 I-S I N(C+H))$, which is the equivalent of indirect store-recall in the 41 c , though the Sharp allows up to 15 levels of indirect addressing: for instance, $A(A(A(A(A(B+C))))$) is allowed (it is like RCL IND IND IND IND IND ($B+C)$). Most operations on the SHARP allow this indirect scheme: GOTO's, GOSUB's, BEEP, etc. Finally, cassette control: it is not as convenient as magnetic cards, because, though the machine has full control of start and stop, record and play, it cannot control fast rewind or fast forward. This results in more time needed to find and load a program in the tape. Programs are stored and retrieved by file name. A single C-60 tape can store over 4OK of programs. Taking note of tape counter numbers, it is quite easy to load a program from tape to the machine. There exist an equivalent to the VERify function of the 41c. Data can also be stored and retrieved either manually or under program control.Assignments can be stored and read, too. Furthermore, programs can be chainedz a program can call another progran from the tape, which is inmediately loaded and exacuted, without manual intervention. That program can still oall another program, etc. Thus any program which can be segmented in portions of up to 1424 bytes can be executed automatically by the machine, without the presence of the user being ever required.The machine takes oare by itself of the tape recorder, via control (remote). This is inpossible with the 410 s the user is needed to feed the cards thru the card reader, carde will never get out of the card holder to insert themselves at proper times into the slot. Very useful feature, indeed. Besides, a home cassette recorier is much cheaper than a magnetic card reader, and C-60 tapes are much cheaper than 200 or more may. cards.

Well, we come finally to the end of this extremely lang description of the Sharp machine (see my motivations later). Just present soce examples of its programing :
Example 1) We try to find the numbers of 3 digits, of the form $\overline{A B C}$, such that thay be equal to the sum of the cubes of its digits. For instance, 153 is such a number because $153=1^{3}+5^{3}+3^{3}$. The Sharp program is:
$10 \mathrm{~N}=100$: FOR $\mathrm{A}=1$ TO 9: FOR $\mathrm{B}=0$ TO 9: $\mathrm{FOR} \mathrm{C}=0$ TO 9: IF $A A A+B B B+C C C=N$ PRINT N
$20 \mathrm{~N}=\mathrm{N}+1$: NEXT C: NEXT B: NEXT A

63 bytes
takes 40 seconds to find that 153 is a solution (54 full loops)

Now, please, be kind and write the same program for the 41 c . You'll realize that it is much more difficult, and once written, the program flow is less clear: you'll easily understand what the BASIC program does by simply looking at its listing. Much more difficult looaking at the 41c listing. Besides, the BASIC program can be written "in the head", no need to use paper to write it. Impossible to do the same with the 41 c equivalent program. And I was kind enough that once the test is met, only printing N is required. If I had stated: IF $A A A+B B B+C C C$ BEEP 1: PRINT "SOLUTION IS ";N , the 41c program would have needed to call a subroutine to do all these things.
Example 2) We want to compute $\sin (x)$ from its Taylor series expansion, carrying accuracy to 10 significant digits:
The Sharp program is: (assigned to the $=$ key, automatic input)
1 " $=$ " AREAD $X: Y=X, K=-X X, T=X, N=3, L=E-90$
$2 \mathrm{~T}=\mathrm{KT} /(\mathrm{NDN}-\mathrm{N}), \mathrm{Y}=\mathrm{Y}+\mathrm{T}, \mathrm{N}=\mathrm{N}+2 \mathrm{z}$ IF ABS TL COTO 2
3 PRINT Y
This program is 71 bytes long (though a few can be saved). To find sin 1, simply: 1 (shift) $=$ gives 0.8414709847 within 5 seconds.

The Sharp machine comes with 3 bocks: 2 of them are the "owner's handbook" and the "beginner"s guide to BASIC". Both are well written, though not as complete as HP books, but give many examples, and discuss almost $a l l$ aspects of machine operation, including synthetics (the Sharp has synthetics, of course, though unexplored yet). Examples, exercices and its solutions are given, to fully appreciate all machine characteristics. On the other hand, the "Standard applications" clearly beats the similar book for the 41s It is a $300+$ pages book, with contains over 130 programs in BASIC, fully documented, algorithms included, with examples and exhaustive documentation. These programs include Linear Equations, Matrix Inversion, Eigenvalues, Root Solving,, full statistics programs (linear, exponential,....,etc regressions, etc), engineering, commercial, even games. This bock should serve as an example for other manufacturers (HP included: the tiny 410 Applications Book seems ridiculous when compared to this one).

As a final resume: The 41c, upgraded with memory modules,is more powerful than the Sharp: RFN "language" is more flexible and byte-saver than BASIC, so that a program written in the 410 takes generally less bytes than an equivalent one in BASIC, and runs faster, too. But the Sharp BASIC is much more easy to use than RPN, and allows programs to be written and developed much quicker, as well as taking much loss offort to write a program in BASIC than the same program in RPN. The resulting program is compact, and readily understood and modified, even months after you wrote it. Don't forget that BASIC is a high-level langrage, while RPN is a machine language.

However, the Sharp is, no doubt, a top-of-the-line calculator, without equal but the 41 c . (The Sharp admits peripherals, too. A printer uging non-thermal paper is sold in Spain at half the price of that for the 410). This is the reason why I am telling you all these things: I feel it is a pity that so good a calculator-computer passes almost inadverted, just because it is not an HP product. Now HP and TI have a very strong competer: Sharp, and probably Casio and other japanese enterprises. If Sharp goes on like this, it will finally market a product far outgrowing any HP products the Sharp PC-1211 is very near the 410, if not better for some kind of programmers. Just think on the many bocks on the market plenty of BASIC programs, readily adapted to the Sharp. Just think that the Sharp, including interface and printer cost just 390 US $\$$ here in Spain. A real bargain!

That's all about the Sharp. Excuse the extremely long length of the descriptions it is just that I wanted you to learn something about this machine, not only the fer aspects you can observe in a brochure or having the machine in your hand a moment or two. I remember the times when HP machines where considered "odd" because they used RPN instead of algebraic. Let's not commit the same error twice, considering worse a machine just because it uses BASIC instead of RPN ! HP is good, but it is not God. There may be better things after all, and the japanese are on the way.

Here included are several thingss as I told you before, I have had almost no time to dedicate to programming or experinenting (and it's a real pity: as soon as I can I will dedicate all my efforts to internal ROMs microm code and its decoding. It is the most promising field of new discoveries), but, at some spare times, I had time enough to complete a whole program and a synthetic routine (which could have been a PRC ROM routine):
-the full program is a new version of Othello: I call it Othello level 2, because it features 2 levels of play in the same program. Level 1 plays exactly the same as the previous Othsllo program, and in the same time, or faster. Level 2 features an improved level of play, which results in most of the typical errors of level 1 being avoided, and offers a strong challenge to the user. However, level 2 takes much more time than level 1 to perform a move, about 6 times more time. Fortunately, you can change from level 1 to 2 or viceversa at any moment during the play. You can change sides, too, or can make the $41 c$ to play for you, or a whole game against itself, etc. Most options of the previous program have been conserved, while new options have been added. Improved techniques make the program more efficient in both levels.

Despite being much more complex, Othello 2 is the same length as Othellos 672 bytes, so it fits into 3 mag cards. But it requires a separate data card, which must be loaded at the beginning of each game. The data card contains the strategy ranked in hierarchies, the moves array and several other needed constants.

Othello 2 is printer compatible, and will print the board automatically after HP moves if a printer is present. However, Othello 2 needs more registers to do its works than Othello, so 3 single density modules are required to rm it.

That's all. If you liked Othello, you'll find Othello 2 a real challenge. Try Level 2, and see if you can defeat it. Magnetic cards and full description included. (I also have a version of Othello written for the Sharp in BASIC. It plays the same as Othello for the 41c. If any member of the Melbourne Chapter has a Sharp and wants the program, ask him to write)
-the routine is a quasi-truly random number generator. I've seen many RNG, but all of them required an initial seed to be introduced. I've also seen seed genelators, but they also required an initial seed, or they produced always the same set of seeds 1! What the membership needs and wants is a routine that you call, and every time you call it you get a different mumber, so that you would never predict which one you would get. Such a routine is (on computers) based on internal timings each time you call the RANDOMIZE function of the HP-85, it elaborates a seed based on internal timing, which has millisecond resolution at least, so the seed you get varies over 1000 times a second. This would be ideal if we could implement such a timing-based routine on the 41c. But we can't. So I present here SEED, a routine which generatee a seed based on the internal status of the calculators flags, characters in alpha, final end, address of ROO, program pointer, subroutine addresses, etc. So, the seed you get entirely depends on the location where the XEQ"SEED" is executed, the flag status, the current SIKE, eto, etc. Besides, calling SEED in a loop, always produces different seeds (not recurrent seeds). Minimal changes in configuration (changing or editing a program, eto) completely change the resulting seed. So, include a call to SEED in any program using random mumbers, and you are 99.9% guaranteed to obtain an unpredictable sequence.

That's all. My fres time has elapsed. Find included photocopies and magnetic cards of the programs. Also find included some views of Madrid, the capital of Spain. They can give you some idea about the town (I recei-
ved a post card from you which featured a view of Melbourne, I think. Madrid is no less than 600 km apart of the nearest beach, right in the exact center of Spain, far from the Sea).

Well, John, it has been a real pleasure to "talk" with you once more. Please, write as soon as you can.

Yours sincerely:
post-data : I'll send more material as soon as I can

I know that it may be a little redundant, but I feel that this new version of my progrem OTHELLO is a signifi cant improverent both in level of play and possibilities over the previous one, published in PPC Technical Notes V1N2P44-50 (PPC TN is a publication of the Melbourne Chapter. If you are interested, you may obtain membership foras and sample copies by writing to J.E.MoGechie, Philosophy Dept., Monash University, Clayton, Victoria, Australia 3168).

All descriptions of the Othello game -

IPAR 64
Fip 2

(also known as Reversi, Samurai, etc) may be found in the previously referenced issue of PRC TN. A brief description of the game will be given herein, for the sake of completeness.

Othello is played in an $8 x^{8}$ board. There are two standard openings: parallel and diagonal . One of the players plays white (the 0^{\prime} s), the other plays black (the chequerboard symbols).

To make a move, a player places
one of his pieces into an empty location (represented by a dash) in such a way thats
-it should be adjacent to an eneay piece. -at least one enemy piece must be enclosed between the just placed piece and another one previously placed. Any number of pieces enclosed in between are flippedz they became of the captu rer's colour. No empty locations can be enclosed: only full rows of enemy's pieces can be flipped. Capture is possible either in horizontal, vertical or diagonal directions; if more than 1 row is enclosed at the same time, all are flipped.

For instance, look at the printout: black plays his piece at location 46 and \rightarrow oaptures the white piece at 45 (4 vertical 5 horizontal), enclosed between the piece just placed at 46 and the one at 44, and al so captures the white piece at 55 (enclosed bet. 46 and 64), and the one at 56 (en olosed bet. 46 and 66). Should white play now at 67, he would oapture the black pieces at 64,65,66.

PROGRAM CHARACTERISTICS

"OTHBLLO 2" is exactly 672 bytes lons so it exactly fits onto 3 magnetic cards. Additionally, the program uses a data card which contains data used in the program. You must oreate the data card in order to run the program. See listings.

This program needs 3 raks (single den sity) in order to run. It requires SIES $\bar{\circ} \bar{p}$ at least .You need the card reader to read the data card at the very beginning. Once you've read it, the machine turns itself off, to allow you umplug the card reader and plug the printer, instead. If you plug the printer, the board will be printed automatically after every machine move. If you have no printer, it does not matter, as the program is printer-compatible.

This program differs of the previous version in several aspectsi
1)-1t features 2 levels of play $:$ in level 1, the program plays exactly the same as the previous version, and in the same times: about 25 minutes for a whole play (30 machine moves) if no printer, 60 if printing boards.

Level 1 features a surprisingly strong level of play in moderate thinking times: from some 70 seconds for a move at the early stages of the game, to 12 seconds for a move near the end of the game.

On the other hand, the brand-new Level 2 offers a somewhat stronger level of play, at the expense of more time. Level 2 avoids most errors commited by level 1, by exploring the position more in depth. This often results in improved game play. However, level 2 requires much more time than level 1s average tine is 4 minutes per move. Maximum is about 10 minutes, but thinking time decreases very quickly as the game progresses, to a minimum of a few seconds per move. So, don't fear if the first moves seem to take too long. All in all, the whole game (30 machine moves) takes about $1 \frac{1}{2}$ hours if no printer, and about 2 hours if printer is present. As a guide, level 2 is 6 times slower than level 1.

Both levels play no random move at all. The same game is played if you repeat the same moves. This can be used to correct any mistakes that caused you to lose a game. Both levels are greatiy optimized to play as fast as possible, using techniques much more efficient than that of the previous version.

A good advice is that you play level 1 until you become a good player. Then, switch to level 2 for improved games.
2) - flags give the user complete control an the program behaviour. You may selects

- who plays black and who plays white (either you or HP)
- What level (1 or 2) is the machine playing
- Whether the board is printed after every move or caly after machine moves.

The first feature may be used to make the machine play against itself, by changing sides (you were playing black, you now decide to play white). More simply, you may change sides whenever you want, even in the middle of the game. This can be definitely use ful if you are losing !! The second feature is useful to switch from level 1 to 2 or viceversa even in the middle of the game. For instance, play the first 6 moves in level 1, then switch to level 2 for improved performance for the rest of the same. The 3 rd feature is useful to save paper and time, while allowing the user the possibility of having all and every positions of the game recorded on the paper.

INSTRUCTIONS : load the program. XRQ "O2" \rightarrow CARD
-load data card, both sides. After reading the card, the machine shuts off. Unplug the card reader, to make place for the printer (if you have double or quad density modules, or if you do not have a printer, this step is not necessary). Plug the printer, and tum the 410 an . Now, $R / \mathrm{S} \rightarrow$ IEVEL $2 ?$

- if you want diagonal opening,simply $\quad \mathrm{R} / \mathrm{S} \rightarrow$ HP 1ST?
- id. id.parallel opening, $N, E / S \rightarrow$
- if you want HP to make the 1 st move, $\mathrm{R} / \mathrm{S} \rightarrow$
- if you want to make the 1 st move, $\mathrm{H}, \mathrm{R} / \mathrm{S} \rightarrow$

Initially, you play black, and HP plays white. You may change sides at any time, while the machine is at a halt. To change si des, use the $\mathrm{flag} \mathrm{CO}_{8}$

SF CO: HP plays black, you white CF OO: HP plays white, you black
This can be used to make the machine play against itself (see later)

HP moves : if HP moves, it will think its move for a while, then displey:

$$
\begin{aligned}
& \rightarrow \text { I PILAY nn } \\
& \rightarrow \text { FLIP p }
\end{aligned}
$$

where m is the vert/horiz reference of the square where it moves to, and p is the number of flipped pieces.If printer is present, the board is printed now, reilecting the new position, and your move is requested with :
\rightarrow MOVE?
(if no move is possible for HP, it will display NO MOVE, then request your move). (if no printer, please actualize the position yourself, putting an HP piece in the indicated square, and flipping the pertinent pieces)

YOU move : if you move (you have been prompted by MOVE?)
-enter your move (vert/hor): xy R/S
your move is checked for legality. If it is found to be illegal, BAD MOVE will be displayed, and you will be requested for another move. if your move is found to be legal: \rightarrow YOU PLAY x \rightarrow FLIP p
is displayed, and HP proceeds to think its move.
-if you cannot make any legal move, enter \varnothing as your move $\phi \mathrm{R} / \mathrm{S} \rightarrow \mathrm{HP}$ acknowledges that you have no move at all and resumes to think its own move.

Once the last player makes the last move, the board is printed, and :
\rightarrow GANE OVER
\rightarrow HP: IX, YOU: yy
\rightarrow HP (I) or YOU WCN
Where x is the muber of H° 's pieces on the board, yy is the mumber of your orn pieces. The player which has more pieces at the end of the game, wins the game. If both have the same number, it's a tie, and no I Or YOU WON message is displayed.

REMARKS : if you don't use a printer and missed the I PLAY x dis play, simply press backarrow once to clear the MOVE? prompt, and the last HP move will be in the X register. -to change the level of play at any moments wait the $B P$ to be at a halt, thens SP 09 for level 1 , CF 09 for level 2
-to change sides at any moment: wait for the 410 to be halted, thens CF 00 : HP plays white, SF 00 y you play white
this can be used tos simply change sides, either to move twice (HP or you) conseoutively, or to avoid losing, if HP is winning: have HP playing your losing pieces instead of you. It can be used to have the machine play aganist itselfs for instance, HP has just played white, and MOVE? is in the display. Now, to make HP play againgt itself, change sides (SP $0 O_{8}$ now HP plays black), and enter ϕ as your move ($\phi \mathrm{R} / \mathrm{S}$): HP now will play the black pieces against its white pieces. This sequences can be repeated as often as desired (so you can have a whole machinemachine game if you want so, or, more simply, a "good" advice if you do not know what to play).

MOYE？
33 RIH
BAD HOUE
Hove？
66 RIH
YOU PLAY 66
FLIP 1
I PLAY 56
FLIF i

12345678
 2 落口ロ落落口口
 4 录落
 6 落 翏

CRME DUER
HF 24 YOU 40

EXAMPIS

this printout reflects the first fem moves of the beginning of a game．

Here level 2 is being played．
Diagonal opening has been selected，and HP plays the white pieces．

HP also makes the first move．
It plays 65，so it flips the black pio－ ce at 55．

Black＇s answer is 33 ，which is re－ jected，as it is illegal．

The game contimues ．．．
（By the way，the game normally ends when the whole board is full of pieces，but it can also end if no player can make a legal move．Counting of the pieces is not performed in such a case．It is su－ geisted that you make XQ 06 to force printing of the position（if not alrea dy printed），then count the pieces ma nually to decide the winner．This case is infirequent，however）．
TEST EXAMPLES ：to test correct loading level 1：diagonal op，HP first（YOU－HP）
$-65 / 46-33 / 64-63 / 43-66 / 72-53 / 67-81 / 42-68$ $7 \overline{5}-36 / 35-84 / 86-51 / 31-56 / 27-18 / 57-85 / 83-58$ $76-41 / 61-34 / 62-74 / 24-13 / 25-16 / 26-52 / 32-47$ $23-14 / 15-73 / 17-37 / 38-48 / 78-82 / 71-87 / 12-11$ $0-21 / 77-88 / 22-28$
Pinsl：HP：47，YOU： 17 ：HP WCN
level 2：diagon op，HP Pirst

$$
-65 / 66-56 / 46-33 / 63-64 / 53-43 / 23-36 / 34-35
$$

74－76／87－83／26－47／57－42／41－24／13－31／21－14
15－52／62－25／32－86／85－61／58－68／78－38／67－16 17－84／82－22／75－73／37－48／28－72／81－71／51－77 88－27／18－0／12－11
final：$H P: 16, Y O U s 48: Y O U$ सOS
（as you may see，even level 2 can be de－ feated if you play well onough）

Typical end of a game，here you have 40 black pieces on the board，while EPP has only 24 ，so you ron．

That＇s all ！Happy programming，and thank you for your kindness．

	68 RLC 99	135 MCL 92	292 DSE 14	26957012	336 PCL INI 8
或FI\％	69tEL 98	136 ＊	203 RTH	27 H INT	377 RCL 44
03 of 90	7857010	137 IMT	2 CHFT 92	271596	338 号才
14 of 29	71680	136 LASM	2956012	272 SF 83	33967012
85 of 12	72 \％E0 97	139 FRC	296 FSTC	273 XE099	346 LEL 日 3
Q6 CLE	77eLEL 14	140 RCL 13	207 M00 66	274 F90 94	341 LASTX
Q7 17．64	74 OF 13	141	288 \＃18L 12	27507090	$342 \mathrm{ST}+85$
B8 RITH：	75 ＂ 1 ＂	142 FRC	29932	276 PCL 12	343 RCL IHI Q^{3}
89 JF	76 EEP	143 ＋	219＂GHE OUER＂	＂ 277 FRC	344 RCL 时
10＂LEPE 2？		144 PCL 92	21141.118	$2788 \pm 6 ?$	34.5 号＝4？
11 of 23	78 CTO 80	145\％	212 HYIEH	27967057	34667083
12 mm	79＋LDL 12	14650140	213 －	$296+$ LEL 12	347 CHS
13 PROMPT	69040＂	147 FC 92	$214+$ L8L 67	281186 日8	348 号 51 ？
14 OF 时	814CL 60	14867066	215 RCL IWI Y	282670	349 CTO 12
15 FSO 23	82 ＂MOUE＂	1495693	$216+$	283 RTH	3501084
16509	83 FUEM	1596012	217196	284＊LBL 日句	351 FS？ 66
17 ＂mfars	84 TUHE 9	151．LEL 96	21867087	285 RCL	352 RTH
18 PROMPT	85 PSE	152 FC 55	2192	286 PCL 日6	353 ST0［HD
19 RCL 15	86＊LEL 96	15367012	220 ．	207 IHT	$354 *$ LEL 84
2950075	8720 1日	154 AD	221 号》	288 NY？	355 LASTM
21 nd 16	\％8 Fmote？	15531	222 RDH	28951066	$356 \mathrm{ST}-83$
225085	99 Prompt	15680060	223 ST－ 2	2908%	357 RCL 80
23 FST 23	905010	15745	$224+$	2916 Cb	358 RCL 93
24 K\％	918 B 明？	158570 －1	225 HD	292 RCL 10	$3598=9$
355074	9267014	15979	226 HP：	293 FOTC ${ }^{\text {H }}$	366 GTO 12
26×14	939508	16950042	227 APCL 8	29457069	361 STO IHD 明
2751084	94 YE197	1612.11	228 F，\％01	29536	362 RCL 16
28 Yed 96	95 ＂ BHI ＂	16251083	229 ARCL	296	363 ST＊IHD
$29^{\circ} \mathrm{HP} 1 \mathrm{ST}^{\text {a }}$	－ $96 \mathrm{FS2C}$ 明	1638	230 月YIEM	2970	364 ST－ 11
30 PROMPT	9767060	164 SKPCOL	231 EEEP	2985010140	365 ST－ 95
31 HOFF	98 ＊บ1＂	16549.856	232 ADH	299119	36657084
32 F9C 23		16657094	233 PSE	308570.95	367 LEL 12
3361060	10061014	1674 LBL 52	234 景＝7？	381 LLDL 95	36015692
3465	1914LBL 88	168 RCL 21	235 STOP	392 RCL IND 05	369 6T0 91
3561088	$162+\mathrm{PLAY}$	169 SKPCOL	236 ／${ }^{\text {c }}$	303 RCL 16	379.
36＊EL 14	183 ARCL 18	170 X XY	237 号管？	394 ST＊IND Y	
37 CF 87	184 AVIEH	171 ACCHR	238 ＂Y01＂	345 ST－ 45	R13 $=169.8968906$
38 cL	14523	1721858	239 ＂ H （1）	366 DSE A1	
$30 \mathrm{ST0} 86$	18657000	17367092	246 PROMPT	3 37 GT0 05	
48.23 .64	1975104	174 PREIF	$241 *$ LBL 98	398 RTH	र16 $=-1,8896896$
415097	168＋LBL 31	17541.648	242 SF 07	394＊LEL 97	$\mathrm{R17}=9,80898988$
42＋LEL 11	10957082	176510.65	243 SF 68	319 of 86	$R 18=-9,49840890$
43 FCL IHT 0	¢7 110 RCL IHD $\mathrm{B}^{\text {a }}$	6日177＊LBL 89	244 FS？ 99	311 LEL 99	
44 y＝？	$1118=8$ ？	170 PCL 34	245 gTH	3129504	$R 29=-10.86898969$
45 CTO 12	11297088	179 HCCHE	24623	31336	
$46+18 \mathrm{CL} 13$	$113+L B L$	180 PQL 17	247 RCL 87	314	
47 RLL 13	114 RCL 13	181 SkPCOL	248 INT	3155060	$R 23=0.81881118$
48＊	115＊	182 क 12	2492	316 PCL IHD ${ }^{\text {P }}$	$R 24=0,80884890$
495011	116 INT	183＊LEL 18	256 H0D	317 时的？	$R 25=0,83866168$
5 ［1／T	117 RCL 16	184 RCL IHD	35251 LASTX	318 RTH	$\mathrm{R} 26=0.31381316$
515016	$1188=19$	185 RCL 15	252	319 FC？ 66	$R 27=0,63663336$
52 CF 83	11960080	$186+$	253 RCL 87	32950011	
53 CF 68	129 RCL 13	187 RCL IHD ${ }^{\text {P }}$	Y 254 INT	32115.022	Q29＝0， 84855158
54 YEd 97	121 ST 82	188 ACCHR	$255+$	3225002	R 3 可 $=0.41481415$
55 FCO 04	122 LASTX	189 BCL 83	256 号Y	323119	$R 31=0,64655356$
56 VE9 98	123 FRC	190 SKPCOL	257 RTN	724570 日5	R32 $=0.43463435$
57 FGC 60	124×73	19115685	2531 E3	325 SIIN	$833=0.74755257$
58 TTO 14	12507032	1926018	259 ／	326 F5？日日	R34 $=0,42472425$
59 RCL 11	126＊LEL 38	193 PREUF	$268+$	327 CHS	R $35=0,73766267$
6 FRC	127 SIGH	$194 \mathrm{ST}+85$	26151093	328 FC？ 03	$R 36=8.32372326$
$618+8$ ？	128 ST＋ 48	195 CF 12	2624 LEL 56	329 CHS	R37 3 0， 32377178
23610	1296031	196 ISG 84	263 RCL IND 88	33957084	$\mathrm{R} .38=0.21281217$
$63+$ LBL 12	1380 LEL ${ }^{\text {d }}$	197 CTO 39	264 策时？	$331+$ LRL 91	R．39 ${ }^{\text {a }} 0.72772227$
6419507	131 ＂FLIP ${ }^{\text {\％}}$	198 ADY	26.567012	332 PCL 日月	
656011	132 APCL O1	199 AD	$266 *$ LSL 57	333 FCL HD Q^{2}	
66 FO ？ 07	133 gYem	2968 ADV	267 RCL 13	334 ＋	
676012	134 ROL IND 9	291＊EL 12	268 ＊	33557043	

01 LBL＂SEED＂	17 LBL OO
02 ¢	18 CLA
03 RCL M	19 STO M
04 xeq 00	20 ＂トぐ＂
05 RCL b	21 X（ ）M
06 XEQ 0	22 CIA
07 RCL c	23 STO M
08 XEQ 0	24 ASTO L
09 RCL d	25 ＂ム＂
10 XEQ 0	26 ARCL L
114	27 X（）M
12 ／	28 IN1＋X
$13 \mathrm{R}-\mathrm{D}$	29 FRC
14 PRC	$30+$
15 STO M	31 END
16 RTN	

62 bytes

Random number generating routines are not exactly new among PRC members．Ma ny of them have been proposed．I have always preferred the routine

$$
\begin{aligned}
& \text { RCL } \mathrm{nn} \\
& \text { R-D } \\
& \text { FRC } \\
& \text { STO m }
\end{aligned}
$$

because of its simplicity and ita－ speed．Sore random number generator is included in the PPC RCM．

But all of these routines require an initial seed，some number which is used to generate the whole series of random numbers．Generally，if you in－ put the same seed，you get the same numbers．And you must use some care when selecting your starting seed，because some seeds cause the random number algorithm to enter a loop，thus repeating once and agsin the same series of RN．

On the other hand，here presented is a routine，－ called SEED，which is capable of generating a quasi－truly random seed to be used with any RNG algorithm．SERD can also act as a RNG by itself．SEED does not require any input at all．

To use it，you simply：XEQ＂SEED＂oither manually or in a－ program，and you＇ll have a random soed（between 0 and 1）in the X register，to be used as you wish．

SEED only uses the stack and alpha register．It does not use nor disturb any other register，status，or flag．
CEARACTERISTICS：Is there any procedure to obtain a truly random seed from the $41 c$ ？Yes．If we could get readings Prom its internal clock（which varies at a very high speed），we would have random numbers based on internal time－keeping．But we aren＇t able（yet）． So we must accept quasi－truly random seeds．＂Quasi＂means that，in certain conditions，they are predictable．

SRED generates a seed that depends（and varies）ons
－the characters in the alpha registers depending of what charac－ ters are in the alpha－register when you call SEED，you＇ll get a seed or another．
－the point in a program of the XEQ＂SEED＂instruction，or the cu－ rrent position of the program pointer when you call SEED． －the address of the sigma registers，the final END，the 00 regis－ ter，and printer status．
－the status of all 56 flags．
All these higly variable conditions are merged into a nu－ moric value between 0 and 1 ，which is the resulting seed．As you may see，the value you obtain depends on the entire status of the calculator，and the slightest variation will cause a different－ seed to be produced．For instance，you won＇t get the same seed calling SEED from line 02 in your program that you would obtain calling it from line 23．Also，if you ohange SIZE，or order of programs in memory，or edit a program，or change FIX 2 to 4，or almost any other change，another seed would be generated．In－ other words，the seed you get depends completely on the whole－ status of the calculator when you call＂SEED＂．Which is more，－ calling SEED repeatedly from the same location would generate－ different ramdom seeds．

This ensumes that you obtain a remarkably random seed, because, when Jou exacute your program (including the call to SEED), the seed you get will depend an so many conditions that is highly unlikely that you would get the sane seed twice. This can hap pen: for inatance, loading and executing your program exactly after a master clear results in the same seed being generated. This is completely unavoidable, unless internal clocks are accessed, which is not possible nowadays. In any other circumstances, you can be sure to get a random seed.

As stated before, SEED produces different outputs each time it is called, so it can be used as a RNG, though I do not recomend this, as SED takes 3 seconds te generate a random number.

HON IT WORKS : the contents of M, b, c and d are converted to a numerical (positive) value between 0 and 1 , added together and the result, divided by 4 , is the final output. This output is previously "randomized" a little more using R-D, FRC, and the final result is stored in M, to ensure a different output if SEED is called in a loop. Those steps, R-D, FRC,STO M are essen tial. Removing the STO M will cause SESD to always produce the same output, if used in a loop. Removing the R-D, FRC will cause the different seeds to converge to a final value, repeated thereafter.

LBL 00 takes 7 bytes or less in the X register, and converts them into a positive numeric value between 0 and 1, performing the addition, too. The instruction $L N 1+X$ acts upon numeric, but non-normalized, values, normalizing them, and can tributing some randomness. $L N 1+X$ is used instead of $L N$, to avoid DATA ERROR if X contains \varnothing. X cannot contain a negative number at that stage, so the error message is avoided. The process used to convert any contents of X to numeric values is very simples basically it consists in changing the sign to 18 this forces the 7 bytes to be considered as positive, numeric values.

Nothing more. Happy programming.
VALENTIN ALBILLO (4747)

